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ABSTRACT

In a series of papers, the authors have introduced a gen-
eral method for calculating the stability of a Hall-Héroult cell
with high accuracy. The stability of the fluid motions, and
particularly the geometry of the interface between aluminum
and bath, is modeled using a linearization of the magnetohy-
drodynamic equations around a steady-state solution of the
full set of equations under the given operating conditions of
the cell. Measurements were performed on an unstable cell,
in which the currents in the 16 anode rods were recorded
simultaneously. These measured currentsare used as input
disturbances to the stability model. The resulting slightly
modified force field in turn excites the different modes of
oscillation of the cell with amplitudes which are directly re-
lated to the amplitudes of the fluctuation of the current.
The amplitudes of the different modes are thus determined,
so that the time-dependent behavior of the different fields,
in particular those of metal surface contour and of the ve-
locity, can be described. A video-recording of the simulated
metal surface will be presented

1. INTRODUCTION
The authors have been studying stability questions in a Hall-
Héroult cell for many years. The modeling they are leaning
on is obtained by a linearization of the MHD equations for
incompressible fluids around a steady solution.

Each field is thus expressed as a sum of a steady part and
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a small time dependent one called the fluctuation. In this
approach the study of stability is reduced to two different
problems which consist in obtaining first, a steady state of
the system and second, a linearized set of equations for the
fluctuations.The time dependence of these fluctuations is as-
sumed to be of the form exp(At) (A € C and t € R) so that
one is led to solve a kind of generalized ”eigenvalue” prob-
lem (with eigenvalue \). In [5] it is shown that the solutions
which are obtained by an analytic continuation, from the
gravitational (with a non vanishing interface fluctuation) to
the MHD modes, are eigensolutions of an unbounded opera-
tor in an appropriate function space. In other words to each
eigenvalue of this operator corresponds eigensolutions which
form a finite dimensional vector space. In this description
it is clear that the fluid motions are stable if the real parts
of all the eigenvalues have non positive values. It is impor-
tant to notice that, in this description, since the amplitudes
of the eigenmodes are arbitrary, these solutions don’t yield
information concerning the motion itself.

Our purpose in this paper is to demonstrate the use of
the knowledge provided by measurements of the anode cur-
rents to determine the amplitudes of the eigenmodes in real
situations.

It is in fact rather clear that the sum of the interface
fluctuations, corresponding to the different modes (with the
amplitudes corresponding to the measurements), describes
the time dependent part of the interface motion.



In a more precise way one can say that, from a physical
point of view, the fluctuation of the electric current along
one of the anode rods is the sum of the current generated by
the different modes. Conversely, the current being known,
we can derive the amplitudes of the modes from this informa-
tion. In this way we can visualize (from these measurements
and from the steady solution) the motion of the interface
or of any other field. In the case of the interface, since the
steady interface is almost flat, the description obtained from
the fluctuations alone is already quite good.

The advantage of this method is that it sheds light on the
role played by each of the eigenmodes in the description of
the motion.

Let us remark that one already knows [6] that the eigen-

values obtained by the solution of the linearized system of
equations are in full agreement with the frequencies result-
ing from a Fourier transform of the anode currents.
From a mathematical point of view we stick to the philoso-
phy followed in [1] to [5]. This means that the eigenmodes
and eigenvalues are obtained through a variational formula-
tion of the linearized MHD equations. The effects of turbu-
lence are taken into account by the so-called Moreau-Evans
approximation, that is by a damping factor proportional to
the velocity field. As will be shown below, the constraint on
the fluctuation of the current density which has to match
with the current measured along the anode rods appears
mathematically as a source term which excites the different
modes. More precisely the solution of the system of equa-
tions for the electric potential can be expressed as a sum of
two terms: a first one corresponding to the effects of the in-
terface and of the velocity field (as in the computation of the
eigenmodes and frequencies) and a second one taking into
account the constraint mentioned above. These potentials
lead to two different current densities and consequently to
two distinct force fields; one of them is responsible for the
excitation of the eigenmodes.

Since we are dealing with time dependent fields but are
using measurements which are obtained from an initial value
we perform, on all the equations and conditions, a Laplace
transform in the time variable. The final result will evidently
be obtained through an inverse Laplace transform which de-
scribes the fluctuations of the velocity and of the interface; it
is expressed in formula (28). We would like to emphasize the
importance of this relation, which allows us to visualize the
metal/bath interface as a response to the input constituted
by the electric current flowing through the anode rods.

The modeling we are dealing with is briefly described in
section two. The equations and conditions resulting from the
linearization are also recalled. The problem of the electric
potential and of the effects of the constraint on the current
are studied in section three. The dynamic problem is de-
scribed in the next section. Numerical calculations are pre-
sented in the last section. The mathematical developments
are given in appendices.
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Figure 1 — Half transverse cross section

2. THE PHYSICAL MODEL

As shown in figure 1 and 2, the cell is represented by four
domains ;, with boundaries 89, for j = 0,1,2,3 (note
that ©; = Q;U 89Q;). We denote by A the whole cell, of
boundary A (A = AUOA) by I' the interface (metal surface
contour) between the fluids, by £ the domain occupied by
the fluids i.e.

A= U?=0§j,§= [ Uﬁz, and I' = 0Q; N 8N,

by Sk k = 1,2,..,N the sections of the anode rods at the
height where the current is measured and by S, the inter-
section of the boundary of the cell with the cathode.

An arbitrary field g is written as a sum of two terms i.e.

g=9+G,

where g represents the steady field and G the time dependent
fluctuation of g around g. Let G; be the restriction of a field
G to ;. The jump of G through the boundary 99, N A +1
is defined by

[G]annan’,+l = GJ v Gj+1 for ] =0 to 2

The physical system is described by the interface, current
density, velocity, pressure, electric potential and induction
fields. They are denoted by h,j,u,p,¢,b in the steady
state. The corresponding fluctuations are expressed by
H,J,U, P,®,B. We note that the interface is described by
the equation

z3 = h(z1,22) + H(z1, z2,t). (1)
HYDRODYNAMIC EQUATIONS AND CONDITIONS.
Setting
F(U,H) == p(u,V)U-p(U,V)u+JAb+jAB, (2)
and
G(U,H) = - (u, VH) + H(V(z3 — h), 03u), (3)

the equations for the fluctuations of the velocity and pressure
are given in Q; and Q3 by

pdt U= ~VP - prU + F(U,H),

where p is the density,

(4)

div(U) = 0, (5)
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Figure 2 — Longitudinal cross section

whereas on the interface we have
6H=(V(z3 — h),U)+G(U,H) on T
with the conditions
(U,n) =0 on 89 and [P + (8sp)H] = 0.
(see [5] for details)
ELECTRIC POTENTIAL EQUATION AND CONDITIONS.
For the electric potential we have the equation
0A® =0 div(UAb+uAB),
where o is the electric conductivity, with the conditions
(3, V(zs = h)]p = [(, VH) — H(V(z3 - h),8a))]p. -

((J,n) is continuous on all the other internal boundanes).
On OA the current density satisfies

(J,n) = { 0 on AA \ (UR=; Sk U Se)

j§ on Sk, k=1,2,..,N,
where n is the outward unit normal to A, j&§ is the current
density in the k** rod, the value of which results from the
measurements of the current and

(6)

(M

(®)

(10)

J= —oV® in Qo and Qs (11)
"] o(-V®2+UAb+uAB) in Q; and Q.
Furthermore for ®
[® + HO3¢), =0 and ® =0 on S.. (12)

On the other internal boundaries the electric potential is
continuous.

The constraints on the current are expressed by the rela-
tions

(J,n) = j& on Sk, k=1,2,...,N, (13)

where n is the outward unit normal to A.
MAGNETIC INDUCTION EQUATION AND CONDITIONS.
As shown in [3] the induction field can be expressed by

* Biot-Savart’s law. In other words we have for B the expres-
sion
IWA(x-y)
B(x / — T
i~ [Ge=y)p &)
bo [ eH[jlp Alx - y)
b [ RS a4
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where
J;

= . 15
V14 (81h)? + (92h)? (15)
For an arbitrary field f we denote by fy its Laplace trans-
form. i.e.

fax) = /o " flxt) exp(=M)dt,

where )\ is a complex variable in the domain of convergence.

3. THE ELECTRIC POTENTIAL.
In this section we introduce the effects of the constraints im-
posed on the current density in order to match the measured
ones along the rods.

We introduce the following notations for the potential and
the current density

By = &) + & and I = J} + I (16)

To J) corresponds the induction field B), given by the above
Biot-Sava.rt law where J is substituted toJ, whereas to

% is associated with the induction field BY expressed by
the same law but without the surface mtegral term. & is
the solution of the Laplace transform of the problem for @,
i.e. equations (8) to (12) but with the assumption that the
normal component of the current density is vanishing on A,
i.e. j& = 0for all k in (10). In fact &) and B, are essentially
the same as the fields & and B depending on U and H,
already used in references [1] to [5] in the computation of
the eigenmodes and frequencies.

&Y takes into account the constraints on the current den-
sities. As shown in appendix A it is the solution of a varia-
tional problem in the space

V"={y e H'(A);9)=00nS.},

where H'(A) is the classical first order Sobolev space. The
problem can be stated as follows.
Find ®} € V" satisfying

/a(V@';f, Vo)dr
A

/a( uABY, Ve)dr
Q

+Z/(Jo),\¢dd v € V"

kﬂls

(17)

Let us now consider the Laplace transform of the force field
F. From (16) it can be expressed by

Fi=F) + F}, (18)
where
Fi = —p(u, V)U, —p(U,, V)u+J3Ab+jAB}  (19)
and
Fi=JYAb+jABY, (20)
where
I\ = o(-V& +uAB)). (21)

It is important to notice that JY and B/ are depending on
the j§ only (not on Uy and H)). Conversely one notes that



J) and B) are linear functions in Uy and H) so that for
these terms the inverse Laplace transformation consists in
performing this operation on Uy and H) only; in other words
in replacing Uy and H) by U(x,t) and H(x,t).

Let (®x,Bx)h-o be the solutions of the equations (14)
(with the first integral only) and of

/ (V8 Ve)dr = / o(uABY, Ve)dr + / édo, (22)
A Q Sk

for k = 1,2,...N (which are special cases of (17)). It is

then easy to see, from (17), (20) and (22) that FY can be
expressed in the following form
N
F{ =Y (i§)x(JxAb +jA By), (23)

k=1 .
an expression which will be used in the next section.

4. THE HYDRODYNAMIC PROBLEM

In order to derive solutions of the system (4) to (7) we first
start by performing a Laplace transform on these relations.
Taking (18) into account this leads to

pAU) = =V P, — pxUs+F' (U, ,H,) + F + pU(-,0) (24)

div(U,) =0, (25)

AH\=(V(x3 — h),U,)+G(Ux,H\)+ H(-,0) on ' (26)
with the conditions

(Ux,n) =0 on 09 and [Py + (83p)Hx|p = 0. (27)

This problem has been studied in [4] for the case where

N + pUx(+,0) and Hy(-,0) are disregarded. In this ref-
erence it is shown that (in this case) the solutions, which
are obtained with an analytic continuation from the gravi-
tational modes (for non vanishing H) to the MHD ones, the
possible frequencies form a discrete set in any bounded set of
the complex plane. Moreover the eigensolutions associated
with a given element of this set form an finite dimensional
vector space. We denote by A; the frequency associated to
the eigenmode (Uj, Pj, H;) for j = 1,2,..., c0.

Setting (2;)j=; = (Uj, H;)jZ, one can show (see appendix
B) that for the Galerkin approximation, in the space spanned
by the eigenmodes (z; )}il , the general solution has, after a
sufficiently large period of time, the following form

M
2(x,t) = ) 2;(x)y; () exp Ajt

(28)
J=1
where
N
v;(t) = Z/(J,c Ab +jAB,,W;)dr
k=1 0
t
kgt ! {4
x [ib@)esp-tt, (29)
0
is derived in appendix B and Zj = (wg, qx) satisfies
7(2j,2k) = k. (30)
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(see B4 for the definition of r(-,")).

(28) is the solution of our problem. It allows us to obtain
both U(x,t) and H(x,1).

5. NUMERICAL APPLICATIONS

In this section our purpose is to show how U(x,t) and
H(x,t) can be computed with the help of (28).

One proceeds in several steps.

o One first performs recordings of the anode current fluc-
tuations simultaneously on all the anodes (this gives the
set of j§(t), k=1,2,.., N).

e Making use of the computer program we have developed
for the calculation of the eigenmodes and eigenvalues
(which is valid for any geometry, not only for the par-
allelepipedal ones) one obtains the sequence (z;, A; )j"’il
of eigenmodes and eigenfrequencies.

e With the help of r(:,), which is in fact a scalar product
on the function space Z (see B; to By for the defini-
tions), we compute the set Z; = (wg,qx) from relation
(B10). In fact if Zj is expressed in the basis formed by
the z;, i.e. if

M
Ze=)  akz (31)
i=1

(B10) leads, for each fixed j, to the following system of
equations

M
D akr(zj,2) = b, for k=1,2,.,M.  (32)

fm=]

(32) being solved the (z;)}, can be obtained.

e From these results (28) is readily computed.

Some computations of the interface for a real cell are given
in figure 3.

6. CONCLUSIONS

In order to visualize the interface or any other field in the
course of time, one can in principle integrate the time de-
pendent MHD equations. However solutions obtained in this
way are strongly depending on the initial conditions; more-

.over it is difficult to get numerical approximations which

remain valid for sufficiently large time period.

Since the solutions used in our derivation become rapidely
independent of these initial conditions the method presented
here, for a visualization of the interface, has the advantage to
remain valid for arbitrary time periods. Incidentally it also
confirms the accuracy of our computations of the eigenmodes
and frequencies.
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* Figure 8 — Displacements of the interface for a se-
quence of 3 sec. intervals. (4 modes Galerkin ap-
proximation)
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APPENDIX A
Our purpose in this appendix is to show that ®" satisfies
(17).

According to our assumptions &' satisfies (8) to (12) but
for the fact that (J,n) =0 on the Sk, for k = 1,2,.., N and
B is replaced by B’ in (11).

Since & is supposed to fulfill conditions (8) to (12), "
must be a continuous field in the whole cell. It must more-
over satisfy

oA®" = o div(uAB")

and condition (13).

Integrating (A1) against a sufficiently regular function ¥
one obtains, with Gauss theorem and the conditions just
mentioned, the relation

(A1)

N
/ (VY V¥)dr = / o(uAB", VE¥)dr+ Y / j§Wdo.
A A k=1g,
(A2)

APPENDIX B
Let us introduce some function spaces. We set

W = {w:Q = (C)®;div(w) =0, (w,n) =0 on 3Q},

(B1)
W={q:T=C} (B2)

and
Z=WxW. (B3)

In order to introduce a weak formulation, in the space Z,
of the problem given by (24) to (27) we defined the following
(sesquilinear) forms

3
P(r,8) = / p(UsW)dr + / S Hdo, (B4
s(2as6) = /r & (U )7 - (%, m)} do
- / (U W)dr, (B5)
0
ont) = [ FGwar+ [ %G(zx)ada (33)

where z) = (Uy,H)) and ¢ = (w,q) are element of Z and

(B5)

-0y
P=
We also introduce the linear form

In(€, 2(0)) = /n (F, W)dr +

[ pucormar + /r SH(,00d0 (BT

where 2(+,0) = (U(-,0),H(-,0)) is supposed to be given.
Performing the Laplace transform of (4) to (7) and mak-

ing use of Gauss theorem, one integrates successively the

Laplace transforms of (4) against W and of (7) against "‘7;- g



((w,g) € Z). Summing these two results one obtains, with
(B4) to (B7),

Ar(zx,€) = 8(2x,€) + t(2,€) + (€, 2(0)).  (BS)
With this relation the problem for the velocity and the in-
terface can be stated in the following weak form

Problem((U, H)w)
For all A € C find z) € Z satisfying
Ar(2x,€) = s(2x,€) +t(2x,€) +1a(€, 2(0)) V&€ €2.  (BY)
Let z; and Aj, j = 1,2,..., M be the eigenmodes and eigen-
frequencies, solutions of this equation for I) = 0.
We now look for a Galerkin approximation of
Problem((U, H)w) in the subspace
Zn = span(z1, 22, ...2m ). (B10)

In this purpose we introduce the set of biorthogonal fields
Zk = (Wk,q, ) € Zp defined by the relations

r(zi,2x) =8k k=1,2,..., M. (B11)
Introducing in (B9) a solution in the form
M
2, = Za,-z; (B12)
i=1

and taking for £ the element 2k defined by (B11) we obtain

M
Ak =Y oy {8(2i53) + t(z;3)} + I (3), k=1,2,.., M.
J=1
(B13)
But since, from the definition of the modes (z;, \;),

8(25;2n) + t(25;26) = Xibj i, (B14)

one can draw from B13 the following expression for zy

M 5 fm
Ix(Zw) ¢

k.
A=

One then checks that (B15) is the Laplace transform of

= (B15)

M
2(%,) = ) 2k (%) 74 () exp(Axt) (B16)
k=1
where
V() = /0 1(Zk, t") exp(—Axt')dt'. (B17)

In agreement with our assumptions we restrict ourselves to
situations where the motion is stable. i.e. for which

Ree <0 for k=1,2,., M. (B18)
This implies that in I(Zk,t) the terms whith the factors
U(:,0) or H(-,0) disappear for some sufficiently large time

period; we consequently disregard them. This assumption
implies that

Gt = [ (F (,8)4)dr.

The Laplace transform of F{ has been obtained in section
3. From (23) one immediately gets

(B19)

N
F'(z,t) =) j§(t)J; Ab+jAB,).

j=1

(B20)
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Introducing this expression into (B20) and then (B19) into
(B17) one finally obtains

N
vt = Z/(J,Ab+j/\3j,w,,)dr
J=1 0

/o t 7 (') exp(=Axt')dt'. (B21)
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